Historia y funcionamiento de la Inteligencia Artificial
Historia
En 1950, el matemático Alan Turing se hizo una pregunta: «¿Pueden pensar las máquinas?». De hecho, esta simple pregunta transformaría el mundo.
El artículo de Alan Turing «Computing Machinery and Intelligence» y el consiguiente «Test de Turing» sentaron las bases de la inteligencia artificial, su visión y sus objetivos.
De hecho, la inteligencia artificial pretende responder afirmativamente a la pregunta de Alan Turing. Su objetivo es replicar o simular la inteligencia humana en las máquinas.
Se trata de un objetivo ambicioso, que también plantea muchos interrogantes y suscita el debate. Por ello, aún no existe una definición única de inteligencia artificial.
La descripción de «máquinas inteligentes» no explica qué es realmente la inteligencia artificial ni qué hace que una máquina sea inteligente. En un intento de remediar este problema, Stuart Russell y Peter Norvig publicaron el libro «Artificial Intelligence: A Modern Approach».
En ese libro, los dos expertos unifican sus trabajos sobre el tema de los agentes inteligentes en las máquinas. Según ellos, «la IA es el estudio de los agentes que reciben percepciones del entorno y realizan acciones».
En su opinión, cuatro enfoques distintos han definido históricamente el campo de la inteligencia artificial: el pensamiento humano, el pensamiento racional, la acción humana y la acción racional.
Los dos primeros enfoques se refieren al razonamiento y al procesamiento del pensamiento, mientras que los otros dos se refieren al comportamiento. En su libro, Norvig y Russell se centran principalmente en los agentes racionales capaces de actuar para conseguir el mejor resultado.
Por su parte, Patrick Winston, profesor de inteligencia artificial del MIT, define la IA como «algoritmos activados por restricciones, expuestos por representaciones que soportan modelos que vinculan el pensamiento, la percepción y la acción».
Otra definición moderna describe la IA como «máquinas que responden a simulaciones como los humanos, con capacidad de contemplación, juicio e intención». Estos sistemas son capaces de «tomar decisiones que normalmente requieren un nivel humano de conocimiento». Tienen tres cualidades que constituyen la esencia de la inteligencia artificial: intencionalidad, inteligencia y adaptabilidad.
Estas diferentes definiciones pueden parecer abstractas y complejas. Sin embargo, ayudan a establecer la inteligencia artificial como una ciencia informática.
En 2017, durante la Japan AI Experience, el CEO de Data Robot, Jeremy Achin, dio su propia definición moderna y con un toque de humor de la IA .
La inteligencia artificial funciona combinando grandes cantidades de datos con procesamiento rápido e iterativo y algoritmos inteligentes, permitiendo al software aprender automáticamente de patrones o características en los datos. La inteligencia artificial es un vasto campo de estudio que incluye muchas teorías, métodos y tecnologías, además de los siguientes subcampos principales:
- El aprendizaje basado en máquina automatiza la construcción de modelos analíticos. Emplea métodos de redes neurales, estadística, investigación de operaciones y física para hallar insights ocultos en datos sin ser programada de manera explícita para que sepa dónde buscar o qué conclusiones sacar.
- Una red neural es un tipo de aprendizaje basado en máquina que se compone de unidades interconectadas (como neuronas) que procesa información respondiendo a entradas externas, transmitiendo información entre cada unidad. El proceso requiere múltiples pases en los datos para hallar conexiones y obtener significado de datos no definidos.
- El aprendizaje a fondo utiliza enormes redes neurales con muchas capas de unidades de procesamiento, aprovechando avances en el poder de cómputo y técnicas de entrenamiento mejoradas para aprender patrones complejos en grandes cantidades de datos. Algunas aplicaciones comunes incluyen reconocimiento de imágenes y del habla.
- El cómputo cognitivo es un subcampo de la inteligencia artificial que busca una interacción de tipo humano con las máquinas. Utilizando la inteligencia artificial y el cómputo cognitivo, el objetivo final es que una máquina simule procesos humanos a través de la capacidad de interpretar imágenes y el habla – y luego hable de forma coherente como respuesta.
- La visión por computadora se apoya en el reconocimiento de patrones y el aprendizaje profundo para reconocer lo que hay en una imagen o video. Cuando las máquinas pueden procesar, analizar y entender imágenes, pueden capturar imágenes o videos en tiempo real e interpretar sus alrededores.
- El procesamiento del lenguaje natural (NLP, por sus siglas en inglés) es la capacidad de las computadoras de analizar, entender y generar lenguaje humano, incluyendo el habla. La etapa siguiente de NLP es la interacción en lenguaje natural, que permite a los humanos comunicarse con las computadoras utilizando lenguaje normal de todos los días para realizar tareas.
Comentarios
Publicar un comentario